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The geometrical conditions of simultaneous diffraction with a three-circle diffractometer have been 
derived for all the crystal systems and for any crystal orientation. It is shown that 2-independent 
simultaneous diffraction takes place among reciprocal-lattice points located on the same vertical net, 
that its multiplicity is generally odd, and that it obeys special conditions in all cases in the cubic system 
and, for particular orientations and classes of reflection, in the hexagonal and tetragonal systems. 
Finally, procedures are suggested for avoiding taking intensity measurements under conditions of 
simultaneous diffraction. 

Introduction 

In a previous paper (Santoro & Zocchi, 1966) a 
geometrical discussion of simultaneous diffraction 
independent of wavelength in the Weissenberg methods 
has been reported. 

The conditions under which simultaneous diffraction 
occurs for the three-circle diffractometer have been 
recently indicated by Burbank (1965), and a set of 
rules has been deduced graphically by him for various 
possible types of reciprocal net. 

It seems useful to derive these conditions in a more 
general way, taking into account the initial orientation 
of the crystal and its symmetry, in order to be able to 
calculate the indices of the reflections in simultaneous 
diffraction, and to determine the crystal orientations 
more appropriate in taking intensity measurements. 

Simultaneous diffraction independent of wavelength 

In order to obtain the condition of simultaneous dif- 
fraction, it is convenient to introduce a right-handed 
Cartesian coordinate system X, Y,Z, attached to the 
laboratory, as defined in Fig. 1. For X = 0 = 0 °, the ~-, 
and O-circle axes are coincident with Z, and the z-circle 
axis is coincident with Y; the positive sense of the 
rotations is given by the right-hand screw rule. 

Z--q:)- and ® - circle axes 

Y-- X -  circle 
P r i m a r ; % a - r ~  . . . .  axis 

X 
Fig. 1. Reference system and orientation of diffractometer for 

Z=0=0 °. The Y axis is antiparallel to the primary beam 
and the Z axis is perpendicular to the plane of the circle of 
the detector and points from the diffractometer table up 
to the crystal. 

The crystal is initially oriented on the diffractometer 
as already described (Santoro & Zocchi, 1964). 

In order to bring a reciprocal lattice point of co- 
ordinates xoYoZo into reflecting position in the equa- 
torial plane of the diffractometer, the crystal has to be 
rotated ~00, Z0, and 00, where: 

sin ~Oo = - (Yo/~o), cos ~Oo=Xo/~o, sin Zo=zo/d~, 
cos Zo=~o/d'~, and sin Oo=d~/2 

where: 
* 2 .2 2 ~o=(X~+)'g) ~ and do=(Xo+)o+Zo) t .  

The coordinates x~y~z~ of any other reciprocal lattice 
point are transformed by these rotations into x;y;z~. If 
the center of the reflection sphere is at x = 0, y = 1, z = 0, 
the point xlv;z~ xa ill be in simultaneous diffraction with 
the 'primary'  reflection xoYoZo if: 

d~2-Zy; = 0 ,  (1) 

where d~2=x~+y2+z~. By expressing equation (1) in 
terms of the initial coordinates x~y~z~ we get: 

d~ 2 -  (x~xo +Y~Yo + ZiZo) - ( 4 -  d~2) ~ (y¢xo-x~yo) = O. 
(0 (2) 

If ytxo = x~yo (3) 

the two points lie on the same vertical net and the 
condition of simultaneous diffraction reduces to: 

d~ 2 -  (X~Xo + Y~Yo + Z~Zo) = 0 .  (4) 

Condition (4) is independent of the wavelength. In 
what follows, our attention will be confined to the 
solutions of equation (4) (2-independent simultaneous 
diffraction). However, the more general equation (2) 
can be used to obtain 2-dependent solutions, if desired. 

In his treatment of the single-crystal orienter, 
Burbank (1965) also has taken into consideration only 
simultaneous diffraction independent of the wavelength. 

From equation (4) it is easily seen that: 

"[" Here d*=2ld. 
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(i) For  any reciprocal lattice point xiyez~ in simulta- 
neous diffraction with the 'primary'  reflection xoYoZo, 
there exists a third reciprocal lattice point Xo-X~, 
y o - y ~ , z o - z i  which also diffracts simultaneouslv~. 
This indicates the fact that the multiplicity of simul- 
taneous diffraction is always odd. 

(ii) If xoYoZo, xiy~z~, and X o -  x~,yo-y~, Zo-  z~ diffract 
simultaneously the vertical net on which the three 
points lie is rectangular. In fact, for the second and 
third point we have: 

d'~d 7 cos e = x~(xo-  x~) +Y~(Yo-Y~) 

+ z~(zo- zd=O 
i.e. cos e=0 ,  where dT=[(Xo-xOZ+(yo-y~)Z+(zo  - 
zi)~] ~ and e is the angle between the reciprocal vectors 
d;' and dT. 

If the crystal is mounted on the diffractometer so 
that one of the zone-axes given in Table 1 is coincident 
with the ~-circle axis, at least one non-oblique vertical 
net is present. Therefore, for these orientations, 2- 
independent simultaneous diffraction takes place. (In 
Burbank's terminology, for these orientations multiple 
diffraction is 'intrinsic'; it is worthwhile to note that 
2-dependent simultaneous diffraction can also be called 
'intrinsic', even if the geometrical situation is different). 
If the zone-axis is coincident with a reciprocal row 
(see Table 1), all the reciprocal lattice points are located 
on vertical nets; under these circumstances, 'syste- 
matic' simultaneous diffraction is possible. 

:l: Note that xo-x~, Yo-Yi, zo-z~ is the plane which 'indi- 
rectly reflects' (James, 1964) in the same direction of xo,Yo, Zo 
part of the intensity reflected by xe,y~, z~, and that x~,y~, z~ is the 
plane which 'indirectly reflects' in the same direction of xo,Yo, zo 
part of the intensity reflected by x0 - x~,y0 - y~, z0 - z~. 

Table 1. Zone-axes lying on at least one non-oblique 
reciprocal net 

System Axis 
Monoclinic [010]* 
Orthorhombic [UV0], [UOW], [0VW] 

[100]*, [010]*, [001]* 
Tetragonal and hexagonal [UVW], [UOW], [0VW] 

[UVO]*, [1001", [0101", [O01l* 
Cubic Any zone-axis* 

* Zone axes coincident with a reciprocal row. 

Condition (4) can be written: 

d~ =d~ cos ~0, (5) 

where e0 is the angle between the two vectors d~* and fl~. 
The relationship between the indices of the two re- 

ciprocal lattice points, expressed by equation (3), can 
be found on the basis of elementary crystallographic 
considerations for any given initial orientation of the 
crystal. As an example, for a cubic crystal, if [UVW] 
is the zone-axis coincident with the q~-circle axis, and 
if hokolo is the reflection under examination, then the 
reciprocal lattice points h~kih located on the same 
vertical net with hokolo are given by: 

(lo V -  ko W)h~ + (ho W -  lo U)ki + (ko U -  ho V)h = 0. (6) 

There are many initial orientations of a crystal for 
which a given net is vertical and equation (5), derived 
for this net, is the same independently of the initial 
orientation of the crystal. This is a consequence of 
the particular geometry of a three-circle diffractometer. 

Discussion 

By applying the above considerations to all possible 
cases, the results reported in Table 2 are obtained. 

Crystal 
~ystem 

Monoclinic 

Orthorhombic 

Tetragonal 

Hexagonal 

Cubic 

Table 2. Conditions o f  2-independent simultaneous diffraction 
Zone axis 

coincident with Reflections 
the Q-circle axis affected Exceptions 
[010]-2nd setting All hO0. 0k0; 001. hOI 

Reflections affected 
according to 

special conditions 

[uvo] 
[uow] 
[o vw] 
[lOO] 
[OlO] 
[OOl] 

[uvw]  
[uvo] 
[uow] 
[ovw] 
[lOOl 
[olo] 
[OOl] 

nU, nV, l, 

hkO h00; 0k0 
hOl h00; 001 
Okl 0k0; 00l 
All h00; 0k0; 00l; Okl 
All h00; 0k0; 00l; hOl 
All h00; 0k0;00l; hkO 

00/; nU, nV, 0 
All 00l; h'k'l (h'U+k'V=O); nU, nV, 0 
hOl h00; 00l 
Okl 0k0; 001 
All h00; 00l; Okl 
All 0k0; 00l; hOl 
All h00; 0k0; 00/; hkO 

hkO 

hkO 
hkO 

[uvw]  
[uvo] 
Wow] 
[o vw] 
[lOO] 
[OLO] 
[OOl] 

Any 

n(2U- V), n(2V- U), / 001; n(2U- V), n(2V- U), 0 
All 00/; h'k'l (h'U+k'V=O); n(2U- V),n(2V- U),0 hkO 
2h, h,l 001; 2h, h,0 
h,2h, l 00/; h,2h,0 
All 00l; 2h, h,0; Okl hkO 
All 001; h,2h,0; hOl hkO 
All 001: h00; 0k0; hkO 

All nU, nV, nW All 



M. Z O C C H I  AND A. S A N T O R O  333 

The intensity of all the reflections affected (column 
3 in Table 2) is systematically measured under condi- 
tions of triple diffraction, except for those reflections 
for which special conditions hold (column 5)t; for 
reflections with such special conditions, the multiple 
diffraction is of higher order. These conditions are 
easily derived from equation (5). For example, in the 
case of the tetragonal and cubic systems, for the re- 
flections of the vertical net (001)~ (International Tables 
for X-ray Crystallography, 1959) the condition is: 

h~- hohi - k i (ko-  ki) = 0.  (7) 

In the case of the hexagonal system, for the vertical 
net (001)~ the condition is" 

2h~- h~(2h0 + k 0 -  2ki) + [2k~- k~(ho + 2k0)] = 0 ,  (8) 

where hokoO are the indices of the reflection under 
examination in both cases. Equations (7) and (8) 
describe the 2-independent simultaneous diffraction in 
a square and a hexagonal net, respectively. 

In the cubic system all reflections affected obey 
special conditions. For example, for a cubic crystal 
with [100] coincident with the C-circle axis, equation 
(7) shows that the primary reflection 860 is in simul- 
taneous diffraction with 420, 7T0, l i0, 800, 930, T30, 
060, 770, 170, and 480; the primary reflection 500 is in 
simultaneous diffraction with 420, 47.0, 120, and 120; 
etc. For the same orientation, the reflection 244 is 
located on the vertical rectangular net (0i 1)~ for which 
the following condition holds: 

h~- hoh~ + 2ki(k~ - k0) = 0.  (9) 

From this equation it is found that 200, 422, ~-22, and 
044 reflect simultaneously with 244. 

The above examples show that a great variety of 
effects is possible for vertical nets for which the dif- 
fraction condition is special; under these circumstances 
no general rules of simultaneous diffraction can be 
established. This applies also to rectangular nets, as 
shown by the last example. 

When the conditions derived from equation (5) are 
not special, simultaneous diffraction takes place ac- 
cording to the rules found by Burbank (1965) for 
rectangular nets; i.e. diffraction is single for reciprocal 
lattice points located on the axes of the net and triple 
for the others. 

For non-primitive Bravais lattices the solutions of 
the equations derived for the various nets are, in gen- 
eral, but not always, fewer, because some of them are 
forbidden. 

The same considerations hold for space-group ex- 
tinctions: in this case the possibility of even multiplicity 
of simultaneous diffraction arises, and for this reason, 
pure 'Aufhellung' effects (Wagner, 1920) ale possible. 

Table 2 shows that 2-independent simultaneous dif- 
fraction affects a very large fraction of the measurable 
reflections for the most common orientations. 

t We define as a 'special condition' an equation, derived from 
equation (5), in which all the coefficients are rational numbers. 

An obvious way of avoiding 2-independent simul- 
taneous diffraction is to misset the crystal, by using 
the arcs of the goniometer head, so that there are no 
vertical nets in the new orientation. The missetting is 
performed, in general, by rotating the crystal first by 
a small angle a about the X axis and then by a small 
angle ~ about the Y axis~. The angles a and e have to 
be both different from zero for the cubic system;in the 
other crystal systems, for certain orientations of the crys- 
tal, only one of the two rotations is necessary. For 
example, for a tetragonal crystal with [10i] coincident 
with the ¢ axis and d1"01 coincident with the Y axis, 
only a rotation e is necessary to move the net (010)~ 
from the vertical plane. 

In addition, from Table 2 it is clear that in many 
cases one or two particular orientations of the crystal 
are sufficient to avoid 2-independent simultaneous dif- 
fraction for all the reflections. For example, by setting 
[101] coincident with the q~-axis, it is possible to meas- 
ure all the reflections of tetragonal and orthorhombic 
crystals, except hOl; the reflections hOl can be measured 
by reorienting the crystal with [011], for instance, 
coincident with the oh-circle axis. Similar considera- 
tions hold for the other crystal systems, except the 
cubic system. 

Conclusions 

From the results of the present investigation and those 
relative to the Weissenberg (Santoro & Zocchi, 1966) 
and precession (Burbank, 1965) methods, it appears 
that only accidental simultaneous diffraction is not 
easily avoidable in the most used diffraction techniques. 

Therefore, in all the cases in which simultaneous 
diffraction may introduce significant errors in intensity 
measurements, the problem is to find out what reflec- 
tions are affected by simultaneous diffraction depend- 
ent on the wavelength. However, since this type of 
simultaneous diffraction is accidental in nature, in gen- 
eral it should not be a serious cause of error, especially 
if the reciprocal lattice parameters are large. 

In those cases in which very accurate intensity 
measurements are required, and in many neutron dif- 
fraction problems (Moon & Shull, 1964; Willis & 
Valentine, 1962), all the reflections have to be measured 
under conditions of single diffraction. This can be 
accomplished by properly using a four-circle diffrac- 
tometer (Willis, 1961; Santoro & Zocchi, 1964) or, if 
such an instrument is not available, by measuring the 
intensities of interest at two different wavelengths, and 

:l: The setting angles ~ and Z after the rotations o" and e are 
given by: 

zo sin a-yo cos tr 
tan tp = (Yo sin a + zo cos tr) sin e + xo cos 

tan Z = 
(Yo sin a+zo cos a) cos 8-x0 sin 

{[(Yo sin a+zo cos a) sin e+xo c o s  812q-[y0 COS 0"--7,0 sin a]2}~ 
where xoYoZo are the Cartesian coordinates of the reciprocal 
lattice point before the rotations tr and 8. 
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by checking, by means of equation (2), the diffraction 
conditions in both cases*. 
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Numerical values of X-ray absorption cross-sections for atoms are given for 10 commonly used X-ray 
wavelengths. The calculations are based on a multipole expansion of the appropriate matrix elements, 
using hydrogen-like eigenfunctions, for the K, L, M and N electrons. For the given figures, agreement 
with experiment is in general better than 5 Vo. 

Photoelectric absorption cross-sections for X-rays have 
been calculated by several authors using hydrogen-like 
eigenfunctions (Bethe & Salpeter, 1957). These calcu- 
lations have been made for the K- and L-shells using 
the dipole approximation. Recently one of us discussed 
the angular dependence of the Borrmann effect, and 
it was found that apart from the influence of thermal 
vibrations within the crystal, this angular dependence 
is caused by electrical quadrupole transitions (Wagen- 
feld, 1966).* Here the methods, and to some extent 
the results of H/Snl's (1933) and Eisenlohr & Mfiller's 
(1954) calculations of the generalized atomic scattering 
factor for the region of anomalous dispersion have 
been used, but the calculations have been extended for 
the M- and N-shells as well. A further complication 
has been the inaccuracy of the screening constants 
which are needed for the hydrogen-like eigenvalues. 

* Dipole-octupole transitions, which give a smaller contribu- 
tion than quadrupole transitions, are also included. It can be 
proved that electrical octupole transitions are very weak. 
Magnetic transitions do not occur in this case. 

Since Bearden (1964) has measured, or given best 
values for, the X-ray wave length for most elements 
with high precision, one can determine the screening 
constants from his data, using Sommerfeld's fine 
structure formulae for the term values. Since the cal- 
culations are based on hydrogen-like eigenfunctions, 
the eigenvalues for the energies do not agree exactly 
with the energies of the measured absorption edges. 
Hence one cannot expect that this calculation will 
hold for the wavelength region near to and below an 
absorption edge. In the following tables we therefore 
publish only the numerical values for the atomic 
absorption cross-sections which we believe are theore- 
tically justified. For this reason we also do not give 
cross-sections for the wave length region longer than 
the L-shell absorption edge. However, we compared 
some of the values with experimental data, and found 
agreement within 5 ~ .  The comparisons showed that 
these values are significantly better than the theoretical 
values given in International Tables /or X-ray Crys- 
tallography (1962). 


